## 


www.intelligentactuator.com

## More Powerful and Easy Operation

Suitable for high-speed and high-payload transfer
The large single-axis robot has further evolved.
(Ex) Transfer equipment for beer bottle cases

X-axis: ISB-WXMX (double slider specification)
Z-axis: ISB-WXM (double slider specification)


* Maximum values of each item

| Model | Stroke | Payload | Speed | Acceleration/ <br> deceleration |
| :---: | :---: | :---: | :---: | :---: |
| IS(P)B-WXM | 1300 mm | Horizontal 400kg <br> Vertical 80kg | $2500 \mathrm{~mm} / \mathrm{s}$ | 1.2 G |
| IS(P)B-WXMX | 3000 mm | Horizontal 160 kg <br> Vertical 32kg | $2500 \mathrm{~mm} / \mathrm{s}$ | 1.2 G |



Equipped with a newly designed intermediary support.
No speed slowdown due to long stroke!

* Patent pending

Intermediary support: Suppresses deflection of the ball screw, making long-stroke and high-speed operations possible.

## High payload capacity

Higher Performance


Horizontal up to 400kg, Vertical up to 80 kg

## Double Slider

 specification is selecatbleIt supports larger overhang thanks to higher moment rigidity.


Added Option


Vertical mounting is now possible for the long stroke IS(P)B-WXMX type.

Easy grease replenishing Maintainability
Easy grease replenishing Maintainability

## Expended Mounting Method <br> No limitations on the mount

 Grease can be replenished without removing the main unit cover and objects attached on the slider.


## Product lineup

| Type |  | Main unit width | Motor output (W) | Lead (mm) | Positioning repeatability (mm) | Stroke (mm) | Max. speed ( $\mathrm{mm} / \mathrm{s}$ ) | Max. payload (kg) | Specification/ drawing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IS(P)B | WXM |  | 750 | 50 | $\begin{gathered} \pm 0.01 \\ {[ \pm 0.005]} \end{gathered}$ | $\begin{aligned} & 100 \sim 1300 \\ & \text { (every } 50 \mathrm{~mm} \text { ) } \end{aligned}$ | 2500 | Horizontal 80 Vertical 14 | P.5~8 |
|  |  |  |  | 25 |  |  | 1250 | Horizontal 160 Vertical 32 |  |
|  |  |  |  | 10 |  |  | 600 | Horizontal 200 Vertical 65 |  |
|  |  |  |  | $\begin{gathered} 10 \\ \text { (High payload setting) } \end{gathered}$ |  |  | 600 | Horizontal 400 Vertical 80 |  |
|  | WXMX |  | 750 | 50 | $\begin{gathered} \pm 0.01 \\ {[ \pm 0.005]} \end{gathered}$ | $\begin{gathered} 900 ~ 3000 \\ \text { (every 50mm) } \end{gathered}$ | 2500 | Horizontal 80 Vertical 14 | P.9~12 |
|  |  |  |  | 25 |  |  | 1250 | Horizontal 1600 Vertical 32 |  |

* Values in the [ ] are for the ISPB.

|  |  | Mounting orientation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Series | Type | Horizontal, flat mount | Vertical mount | Horizontal side mount | Horizontal ceiling mount |
|  | WXM | $\bigcirc$ | $\bigcirc{ }^{* 1}$ | *2 | $\bigcirc * 3$ |
|  | WXMX | $\bigcirc$ | $\bigcirc{ }^{* 1}$ | $\times$ | $\times$ |

*1For vertical mounting, the motor should be on the upper side. If the motor is mounted on the bottom side, grease could be separated and the base oil flows into the motor part, causing failures of the controller, motor, and encoder. For this reason, it is not recommended that the motor be mounted on the bottom side.
*2 Oil separated from grease may flow out from the opening of the actuator's side surface. Some parts fallen from the equipment may also go into the opening of the actuator's side surface. Attach a protective part for operations as necessary.
*3 For the ceiling mount, the screw cover may sag and contact the workpiece. For 600 mm stroke or longer, the workpiece and other objects must be attached apart from the slider seating surface.

| Model | Stroke | Distance A |
| :---: | :---: | :---: |
| IS(P)B-WXM | Over 600 mm, <br> less than <br> 1000 mm | 5 mm or more |
|  | Over 1000 mm, <br> up to 1300 mm | 10 mm or more |



## Precautions on mounting

- The flatness of the main unit mounting surface and the workpiece attaching surface should be $0.05 \mathrm{~mm} / \mathrm{m}$ or less. Inadequate flatness increases sliding friction, causing malfunction.
- The bottom surface and the left side (when viewed from the opposite side of the motor) of the main body base are the reference surfaces for the slider travel accuracy. When travel accuracy is needed, mount the main body using each surface as a reference.

When mounting using the side surface as reference, the surface should be machined according to the drawing below.


| Reference surface | Dimension $\mathrm{A}(\mathrm{mm})$ |
| :---: | :---: |
| Slider reference <br> surface (side surface) | $2 \sim 9$ |
| Base reference <br> surface (side surface) | $2 \sim 5$ |

## Overhang length

This is the guideline of offset lengths for smooth operations of the actuator, when a workpiece or a bracket is mounted offset from the actuator slider. If the offset length greatly exceeds the guideline value, it may cause a failure due to vibration and the like. Use the actuator within the guideline value of the offset length.


## SB-WXM-750 <br> SPBB-WXM-750 <br> 

- Model specification item


| Stroke |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Stroke (mm) |  | ISB | ISPB |  |
| 100 |  | $\bigcirc$ | $\bigcirc$ |  |
| 150/200 |  | $\bigcirc$ | $\bigcirc$ |  |
| 250/300 |  | $\bigcirc$ | $\bigcirc$ |  |
| 350/400 |  | $\bigcirc$ | $\bigcirc$ |  |
| 450/500 |  | $\bigcirc$ | $\bigcirc$ |  |
| 550/600 |  | $\bigcirc$ | $\bigcirc$ |  |
| 650/700 |  | $\bigcirc$ | $\bigcirc$ |  |
| 750/800 |  | $\bigcirc$ | $\bigcirc$ |  |
| 850/900 |  | $\bigcirc$ | $\bigcirc$ |  |
| 950/1000 |  | $\bigcirc$ | $\bigcirc$ |  |
| 1050/1100 |  | $\bigcirc$ | $\bigcirc$ |  |
| 1150/1200 |  | $\bigcirc$ | $\bigcirc$ |  |
| 1250/1300 |  | $\bigcirc$ | $\bigcirc$ |  |
| Options |  |  |  |  |
| Type | Model | Ref. Page |  |  |
| Cable exit from the left side | A1 | P13 | $\bigcirc$ |  |
| Cable exit from the right side | A3 | P13 | $\bigcirc$ |  |
| AQ seal (equipped standard) (Note 1) | AQ | P13 | $\bigcirc$ |  |
| Brake | B | P13 | $\bigcirc$ |  |
| Hanging bracket | EB | P13 | $\bigcirc$ |  |
| High payload setting (Note 2) | HLA | P13 | $\bigcirc$ |  |
| Home limit switch | L | P13 | $\bigcirc$ |  |
| Specify master axis | LM | P13 | $\bigcirc$ |  |
| Non-motor end specification | NM | P13 | $\bigcirc$ |  |

(1) The maximum speed decreases as the stroke becomes longer due to the dangerous number of rotation of the ball screw. Confirm the maximum speed, referring to the "Stroke and Max. Speed" of the desired stroke.
(2) The payload specified in the"Main Specifications"shows maximum value. Refer to the "Payload Table by Speed and Acceleration/Deceleration" for details.
(3) The guideline of usable duty ratio varies depending on the operating conditions (e.g. payload and acceleration/ deceleration). Refer to P. 15 for details.
(4) Pay close attention to the mounting orientation. Refer to P. 4 for the overhang length.
(5) The center of gravity of the attached object should be less than $1 / 2$ of the overhang distance. Even when the overhang distance and load moment are within the allowable range, the operating conditions should be moderated if some abnormal vibration or noise is observed.
(6) Guideline for the overhang length is under 900 mm in the Ma , Mb , and Mc directions. (For double slider specification, slider actual span Min. [35mm]: 1975mm, Max. [180mm]: 2700mm or less) Refer to P. 4 for the overhang length.
(7) Refer to P. 14 for ordering model of the double slider specifications and precautions.

[^0](Note) When using a cable longer than 20 m up to 30 m , specify " N " in the cable length of the actuator
model, and separately order the cable. Model code for order is as follows.
Specify the cable length in $\square \square \square$. (Ex) $250=25 \mathrm{~m}$
[Motor cable]
2 : CB-X-MA $\square \square \square$
T4: CB-X2-MA $\square \square \square$
Encoder cable]
T2/T4 (Standard): CB-X1-PA $\square \square \square-A W G 24$
T2/T4 (with LS): CB-X1-PLA $\square \square \square-\mathrm{WG} 24$

| Item |  |  | Details |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead |  | Ball screw lead (mm) | 50 | 25 | 10 | 10 (high payload setting) |
| Horizontal | Payload | Maximum payload (kg)(Note 4) | 80 | 160 | 200 | 100-400 (Note 5) |
|  | Speed/ acceleration/ deceleration | Maximum speed (mm/s) | 2500 | 1250 | 600 | 600 |
|  |  | Rated acceleration/ deceleration (G) | 0.3 | 0.3 | 0.3 | 0.2 |
|  |  | Maximum acceleration/ deceleration (G) | 1.2 | 1.2 | 0.6 | 0.6 |
| Vertical | Payload | Maximum payload (kg)(Note 4) | 14 | 32 | 65 | 40-80 (Note 5) |
|  | Speed/ acceleration/ deceleration | Maximum speed (mm/s) | 2500 | 1250 | 600 | 600 |
|  |  | Rated acceleration/ deceleration (G) | 0.3 | 0.3 | 0.3 | 0.2 |
|  |  | Maximum acceleration/ deceleration (G) | 1 | 1 | 0.5 | 0.5 |
| Thrust |  | Rated thrust (N) | 255 | 510 | 1021 | 1021 |
| Brake |  | Brake specification | Non-excited operation electromagnetic brake |  |  |  |
|  |  | Brake retaining force (kgf) | 14 | 32 | 80 | 80 |
| Stroke |  | Minimum stroke (mm) | 100 | 100 | 100 | 100 |
|  |  | Maximum stroke (mm) | 1300 | 1300 | 1300 | 1300 |
|  |  | Stroke pitch (mm) | 50 | 50 | 50 | 50 |

(Note 4) When Double slider specification (W) is selected, the maximum payload will be
decreased. Refer to the table below for details.
(Note 5) For stable operations, use the product with 100 kg or more payload for the horizontal mount, and with 40 kg or more payload for the vertical mount.

| Item | Details |
| :---: | :---: |
| Driving system | Ball screw Lead 10: $\varphi 20 \mathrm{~mm}$, Lead 25 and $50: ~ \varphi 25 \mathrm{~mm}$ Rolled C10 [C5 or equiv.] |
| Positioning repeatability | $\pm 0.01 \mathrm{~mm}$ [ $\pm 0.005 \mathrm{~mm}$ ] |
| Lost motion | 0.05 mm or less [ 0.02 mm or less] |
| Base | Material: Aluminum white alumite treatment |
| Linear guide | Linear motion endlessly circulating type |
| Static allowable moment (Single slider specification) | $\mathrm{Ma}: 774 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 1106 \mathrm{~N}: \mathrm{m}$ |
|  | Mc: $2175 \mathrm{~N}: \mathrm{m}$ |
| Static allowable moment <br> (Double slider specification)(Note 6) | $\mathrm{Ma}: 3620 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 5170 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mc}: 4340 \mathrm{~N}: \mathrm{m}$ |
| Dynamic allowable moment (Single slider specification)(Note 7) | $\mathrm{Ma}: 162 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 231 \mathrm{~N}: \mathrm{m}$ |
|  | Mc: $455 \mathrm{~N}: \mathrm{m}$ |
| Dynamic allowable moment (Double slider specification)(Note 7) | Ma: Slider actual span Min.  616 N $\cdot \mathrm{m}$, Max.  $1130 \mathrm{~N} \cdot \mathrm{~m}$ |
|  | Mb : Slider actual span Min.  $880 \mathrm{~N} \cdot \mathrm{~m}$, Max.  $1610 \mathrm{~N} \cdot \mathrm{~m}$ |
|  | Mc: Slider actual span Min.  $739 \mathrm{~N} \cdot \mathrm{~m}$, Max. 739 N $\cdot \mathrm{m}$ |
| Ambient operating air temperature, humidity | 0-40 ${ }^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (Non-condensing) |
| Degree of protection | - |
| Vibration/shock resistance | $4.9 \mathrm{~m} / \mathrm{s}^{2}$ |
| Overseas standards | CE marking, RoHS directive |
| Motor type | AC servo motor (200 V) |
| Encoder type | Battery-less absolute (17-bit) |

(Note 6) Values remain unchanged regardless of slider span.
(Note 7) Based on the standard rated operational life of $10,000 \mathrm{~km}$, operational life varies according to operating and mounting conditions.
(Note ) Values in brackets [ ] are for ISPB.

Slider type moment direction


Payload by speed and acceleration
The unit for payload is kg. If blank, operation is not possible.

| Orientation |  | Horizontal |  |  |  |  |  |  |  |  |  |  | Vertical |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead | Max. speed | Acceleration (G) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| 50 | 2500 | 80 | 80 | 60 | 48 | 40 | 34 | 30 | 27 | 23 | 18 | 15 | 14 | 14 | 14 | 14 | 14 | 13 | 12 | 11 | 10 |
| 25 | 1250 | 160 | 160 | 120 | 96 | 80 | 68 | 60 | 54 | 46 | 36 | 30 | 29 | 29 | 29 | 29 | 29 | 26 | 24 | 22 | 20 |
| 10 | 600 | 200 | 200 | 150 | 120 | 100 |  |  |  |  |  |  | 65 | 65 | 60 | 50 |  |  |  |  |  |
| $\begin{gathered} 10 \\ \text { (High payload setting) } \\ \hline \end{gathered}$ | 600 | 400 | 265 | 200 | 160 | 135 |  |  |  |  |  |  | 70 | 70 | 68 | 64 |  |  |  |  |  |

## Payload by speed and acceleration (Double slider specification)

The unit for payload is kg. If blank, operation is not possible.

| Orientation |  | Horizontal |  |  |  |  |  |  |  |  |  |  | Vertical |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead | Max. speed | Acceleration (G) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (mm) | ( $\mathrm{mm} / \mathrm{s}$ ) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| 50 | 2500 | 70 | 70 | 50 | 38 | 30 | 24 | 20 | 17 | 14 | 8 | 5 | 10 | 10 | 8 | 6 | 4 | 3 | 2.5 | 2 | 1 |
| 25 | 1250 | 150 | 150 | 110 | 86 | 70 | 58 | 50 | 44 | 36 | 26 | 20 | 25 | 25 | 22 | 20 | 19 | 15 | 12 | 9 | 7 |
| 10 | 600 | 190 | 190 | 140 | 110 | 90 |  |  |  |  |  |  | 56 | 56 | 50 | 40 |  |  |  |  |  |
| 10 (High payload setting) | 600 | 390 | 255 | 190 | 150 | 125 |  |  |  |  |  |  | 70 | 70 | 58 | 54 |  |  |  |  |  |


| Stroke and max | num speed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead Stroke | $100 \sim 800$ <br> (every 50 mm ) | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 |
| 50 | 2500 |  |  | 2260 |  | 1840 |  | 1570 |  | 1360 |  |
| 25 | 1250 |  |  | 1130 |  | 920 |  | 785 |  | 680 |  |
| 10 | 600 | 460 |  | 380 |  | 320 |  | 270 |  | 235 |  |

(Note) The motor cable and encoder cable are to be connected to the cable joint connector. Refer to P. 18 for the details of the cable
(Note) When the slider is returning to its home position, be careful of interference from surrounding objects, as it will travel until it reaches the M.E. (Note) The product has to be sent back to IAI for adjustments when the home direction is changed.
(Note) The external dimensions are the same as that of the product with brake.


ST: Stroke M.E: Mechanical end S.E: Stroke end


Sectional view Z-Z Detail of deep counterbored hole for bases mounting


Cable exit direction (optional) Base oblong hole details

Dimensions by Stroke

| Stroke | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 560 | 610 | 660 | 710 | 760 | 810 | 860 | 910 | 960 | 1010 | 1060 | 1110 | 1160 | 1210 | 1260 | 1310 | 1360 | 1410 | 1460 | 1510 | 1560 | 1610 | 1660 | 1710 | 1760 |
| B | 540 | 590 | 640 | 690 | 740 | 790 | 840 | 890 | 940 | 990 | 1040 | 1090 | 1140 | 1190 | 1240 | 1290 | 1340 | 1390 | 1440 | 1490 | 1540 | 1590 | 1640 | 1690 | 1740 |
| F | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 |
| G | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 |
| H | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 |
| J | 70 | 120 | 170 | 220 | 270 | 320 | 370 | 420 | 470 | 520 | 570 | 620 | 670 | 720 | 770 | 820 | 870 | 920 | 970 | 1020 | 1070 | 1120 | 1170 | 1220 | 1270 |

- Mass by Stroke

| Stroke |  | 10 | 150 | 200 | 250 | 300 | 350 | 400 | , | 500 | 50 | 600 | , | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | w/o brak | 18.3 | 19.3 | 20.4 | 21.5 | 22.5 | 23.6 | 24.6 | 25.7 | 26.8 | 27.8 | 28.9 | 29.9 | 31.0 | 32.0 | 33.1 | 34.2 | 35.2 | 36.3 | 37.3 | 38.4 | 39.5 | 40.5 | 41.6 | 42.6 | 43.7 |
| (kg) | w/brake | 18. | 19.8 | 20.9 | 22.0 | 23.0 | 24.1 | 25.1 | 26.2 | 27.3 | 28.3 | 29.4 | 30.4 | 31.5 | 32.5 | 33.6 | 34.7 | 35.7 | 36.8 | 37.8 | 38.9 | 40.0 | 41.0 | 42.1 | 43.1 | 44.2 |

## Dimensions (double slider specification)

(Note) The motor cable and encoder cable are to be connected to the cable joint connector. Refer to P. 18 for the details of the cable.
(Note) When the slider is returning to its home position, be careful of interference from surrounding objects, as it will travel until it reaches the M.E.
(Note) The product has to be sent back to IAI for adjustments when the home direction is changed
(Note) The external dimensions are the same as that of the product with brake
(Note) The drawings below show dimension for the minimum slider actual span.


ST: Stroke
M.E: Mechanical end S.E: Stroke end


- Dimensions by Stroke

| Nominal stroke |  | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effective stroke | Slider actual span minimum [ 35 mm ] | 135 | 185 | 235 | 285 | 335 | 385 | 435 | 485 | 535 | 585 | 635 | 685 | 735 | 785 | 835 | 885 | 935 | 985 | 1035 | 1085 |
|  | Slider actual span maximum | - | - | - | 140 | 190 | 240 | 290 | 340 | 390 | 440 | 490 | 540 | 590 | 640 | 690 | 740 | 790 | 840 | 890 | 940 |
| L |  | 810 | 860 | 910 | 960 | 1010 | 1060 | 1110 | 1160 | 1210 | 1260 | 1310 | 1360 | 1410 | 1460 | 1510 | 1560 | 1610 | 1660 | 1710 | 1760 |
| B |  | 790 | 840 | 890 | 940 | 990 | 1040 | 1090 | 1140 | 1190 | 1240 | 1290 | 1340 | 1390 | 1440 | 1490 | 1540 | 1590 | 1640 | 1690 | 1740 |
| F |  | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 |
| G |  | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 |
| H |  | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 |
| J |  | 320 | 370 | 420 | 470 | 520 | 570 | 620 | 670 | 720 | 770 | 820 | 870 | 920 | 970 | 1020 | 1070 | 1120 | 1170 | 1220 | 1270 |

(Note) Nominal stroke: Stroke used as the model code.
Effective stroke: Stroke actually operable

## - Mass by Stroke

| Nominal stroke |  | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effective stroke | Slider actual span minimum | 135 | 185 | 235 | 285 | 335 | 385 | 435 | 485 | 535 | 585 | 635 | 685 | 735 | 785 | 835 | 885 | 935 | 985 | 1035 | 1085 |
|  | Slider actual span maximum | - | - | - | 140 | 190 | 240 | 290 | 340 | 390 | 440 | 490 | 540 | 590 | 640 | 690 | 740 | 790 | 840 | 890 | 940 |
| Mass <br> (kg) | Without brake | 26.6 | 27.6 | 28.7 | 29.8 | 30.8 | 31.9 | 32.9 | 34.0 | 35.0 | 36.1 | 37.2 | 38.2 | 39.3 | 40.3 | 41.4 | 42.5 | 43.5 | 44.6 | 45.6 | 46.7 |
|  | With brake | 27.1 | 28.1 | 29.2 | 30.3 | 31.3 | 32.4 | 33.4 | 34.5 | 35.5 | 36.6 | 37.7 | 38.7 | 39.8 | 40.8 | 41.9 | 43.0 | 44.0 | 45.1 | 46.1 | 47.2 |

(Note) The free slider mass of 3 kg is added to the single slider specification.

## Applicable controllers

The actuator in this page can be operated by the following controllers. Select the type that suits the application of intended use.

| Name | External appearance | Maximum number of connectable axes. | Power voltage | Control method |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Max. number of positioning points |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Positioner | Pulse <br> train | Program | Network *Select |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | DV | CC | CIE | PR | CN | ML | ML3 | EC | EP | PRT | SSN | ECM |  |
| RCON | 1984 | 16 <br> (8for MLL, SSN and ECM) | $\begin{gathered} \text { DC24V } \\ \text { Single phase AC200V } \\ \text { Three-phase AC200V } \end{gathered}$ | - | - | - | - | - | - | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | - | $128$ <br> (ML3, SSN and ECM have no positioning data) |
| RSEL |  | 8 |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 36000 |
| SCON-CB/CGB | 1 | 1 | Single phase AC200V | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $512$ <br> (768 for the network specification) |
| SSEL-CS | 1 | 2 |  | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - | - | - | - | $\bigcirc$ | - | - | - | 20000 |
| XSEL-P/Q | [illia | 6 | Single phase AC200V Three-phase AC200V | - | - | $\bigcirc$ | - | $\bigcirc$ | - | - | - | - | - | - | $\bigcirc$ | - | - | - | 20000 |
| XSEL-RA/SA | vilixi | 8 |  | - | - | $\bigcirc$ | $\bigcirc$ | - | - | $\bigcirc$ | - | - | - | - | $\bigcirc$ | - | - | - | 55000 (varies depending on the type) |

## ISB-WXMX-750 <br>  <br> ISPB-WXMX-750 <br> Absolute <br> 200 750

- Model specification item


| Stroke |  |  |
| :---: | :---: | :---: |
| Stroke $(\mathbf{m m})$ | ISB | ISPB |
| 900 | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{9 5 0 / 1 , 0 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 1 5 0 / 1 2 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 2 5 0 / 1 3 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 3 5 0 / 1 4 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 4 5 0 / 1 5 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 5 5 0 / 1 6 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 6 5 0 / 1 7 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 7 5 0 / 1 8 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 8 5 0 / 1 9 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{1 9 5 0 / 2 0 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 0 5 0 / 2 1 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 1 5 0 / 2 2 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 2 5 0 / 2 3 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 3 5 0 / 2 4 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 4 5 0 / 2 5 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 5 5 0 / 2 6 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 6 5 0 / 2 7 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 7 5 0 / 2 8 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 8 5 0 / 2 9 0 0}$ | $\bigcirc$ | $\bigcirc$ |
| $\mathbf{2 9 5 0 / 3 0 0 0}$ | $\bigcirc$ | $\bigcirc$ |

## Options

| Type | Model | Ref. Page |  |
| :--- | :---: | :---: | :---: |
| Cable exit from the left side | A1 | P13 | O |
| Cable exit from the right side | A3 | P13 | $O$ |
| AQ seal (equipped standard) (Note 1) | AQ | P13 | $O$ |
| Brake | B | P13 | $\bigcirc$ |
| Hanging bracket | EB | P13 | $\bigcirc$ |
| Home limit switch | L | P13 | $\bigcirc$ |
| Specify master axis | LM | P13 | $\bigcirc$ |
| Non-motor end specification | NM | P13 | $\bigcirc$ |
| Specify slave axis | S | P13 | $\bigcirc$ |
| Double slider specification (Note 2) | W | P13 | $\bigcirc$ |

(Note 1) Make sure to specify in the option column of the model specification item.
(Note 2) When Double slider specification (W) is selected, payload, dimensions and main unit mass will change. Refer to P. 10 and P. 12 for details.

|  | (1) The payload specified in the "Main Specifications"shows maximum |
| :--- | :--- | value. Refer to the "Payload Table by Speed and Acceleration/ Deceleration" for details.

(2) The guideline of usable duty ratio varies depending on the operating conditions (e.g. payload and acceleration/deceleration). Refer to P. 15 for details.
(3) Pay close attention to the mounting orientation. Refer to P. 4 for the overhang length.
(4) The center of gravity of the attached object should be less than $1 / 2$ of the overhang distance. Even when the overhang distance and load moment are within the allowable range, the operating conditions should be moderated if some abnormal vibration or noise is observed.
(5) Guideline for the overhang length is under 900 mm in the $\mathrm{Ma}, \mathrm{Mb}$, and Mc directions. (For double slider specification, slider actual span Min. [35mm]: 1975mm, Max. [180mm]: 2700 mm or less) Refer to P. 4 for the overhang length.
(6) Refer to P. 14 for ordering model of the double slider specifications and precautions.

| Cable Length |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Cable code | T2 |  | T4 |  |
|  |  | Standard | With LS | Standard | With LS |
| Standard type | $\mathbf{S}$ (3m) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | M (5m) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Specified length | X06 (6m) ~X10 (10m) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | X11 (11m) ~X15 (15m) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | X16 (11m) ~X20 (20m) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

(Note) Robot cables are standard for this item.
(Note) When using a cable longer than 20 m up to 30 m , specify " N " in the cable length of the actuator model, and separately order the cable. Model code for order is as follows.
Specify the cable length in $\square \square \square$. (Ex) $250=25 \mathrm{~m}$
[Motor cable]
T2 : CB-X-MA $\square \square \square$
T4: CB-X2-MA $\square \square$
[Encoder cable]
TEncoder cable]
T2/T4 (Standard): CB-X1-PA $\square \square \square$-AWG24
T2/T4 (with LS): CB-X1-PLA $\square \square \square \square$-WG24

| Item |  |  | Details |  |
| :---: | :---: | :---: | :---: | :---: |
| Lead |  | Ball screw lead (mm) | 50 | 25 |
| Horizontal | Payload | Maximum payload (kg)(Note 3) | 80 | 160 |
|  | Speed/ acceleration/ deceleration | Maximum speed (mm/s) | 2500 | 1250 |
|  |  | Rated acceleration/ deceleration (G) | 0.3 | 0.3 |
|  |  | Maximum acceleration/ deceleration (G) | 1.2 | 1.2 |
| Vertical | Payload | Maximum payload (kg)(Note 3) | 14 | 32 |
|  | Speed/ acceleration/ deceleration | Maximum speed (mm/s) | 2500 | 1250 |
|  |  | Rated acceleration/ deceleration (G) | 0.3 | 0.3 |
|  |  | Maximum acceleration/ deceleration (G) | 1.0 | 0.6 |
| Thrust |  | Rated thrust (N) | 255 | 510 |
| Brake |  | Brake specification | Non-excitation actuating solenoid brake |  |
|  |  | Brake holding force (kgf) | 14 | 32 |
| Stroke |  | Min. stroke (mm) | 900 | 900 |
|  |  | Max. stroke (mm) | 3000 | 3000 |
|  |  | Stroke pitch (mm) | 50 | 50 |

(Note 3) When Double slider specification (W) is selected, the maximum payload will be decreased. Refer to the table below for details.

Slider type moment direction



| Item | Details |
| :---: | :---: |
| Driving system | Ball screw $\varphi 25 \mathrm{~mm}$, Rolled C10 [C5 equivalent] |
| Positioning repeatability | $\pm 0.01 \mathrm{~mm}[ \pm 0.005 \mathrm{~mm}]$ |
| Lost motion | 0.05 mm or less  or less] |
| Base | Material: Aluminum white alumite treatment |
| Linear guide | Linear motion endlessly circulating type |
| Static allowable moment (Single slider specification) | $\mathrm{Ma}: 774 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 1106 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mc}: 2175 \mathrm{~N}: \mathrm{m}$ |
| Static allowable moment (Double slider specification) (Note 4) | $\mathrm{Ma}: 3600 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 5270 \mathrm{~N}: \mathrm{m}$ |
|  | Mc: $4340 \mathrm{~N}: \mathrm{m}$ |
| Dynamic allowable moment (Single slider specification) (Note 5) | $\mathrm{Ma}: 162 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mb}: 231 \mathrm{~N}: \mathrm{m}$ |
|  | $\mathrm{Mc}: 455 \mathrm{~N}: \mathrm{m}$ |
| Dynamic allowable moment (Single slider specification) (Note 5) | Ma : Slider actual span Min.  $616 \mathrm{~N} \cdot \mathrm{~m}$, Max.  $1130 \mathrm{~N} \cdot \mathrm{~m}$ |
|  | Mb : Slider actual span Min. [ 35 mm ] $880 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{Max}$.  $1610 \mathrm{~N} \cdot \mathrm{~m}$ |
|  | Mc : Slider actual span Min.  $739 \mathrm{~N} \cdot \mathrm{~m}$, Max.  $739 \mathrm{~N} \cdot \mathrm{~m}$ |
| Ambient operating temperature, humidity | $0-40^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (Non-condensing) |
| Degree of protection | - |
| Vibration/shock resistance | $4.9 \mathrm{~m} / \mathrm{s}^{2}$ |
| Overseas standards | CE marking, RoHS directive |
| Motor type | AC servo motor (200 V) |
| Encoder type | Incremental/battery-less absolute |
| Encoder pulse count | 131072 pulse/rev |

(Note 4) Values remain unchanged regardless of slider span.
(Note 5) Based on the standard rated operational life of $10,000 \mathrm{~km}$. operational life varies according to operating and mounting conditions.
Note ) Values in brackets [ ] are for ISPB.

## Payload by speed and acceleration

The unit for payload is kg. If blank, operation is not possible.

| Orientation |  | Horizontal |  |  |  |  |  |  |  |  |  |  | Vertical |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead (mm) | Max. speed ( $\mathrm{mm} / \mathrm{s}$ ) | Acceleration (G) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| 50 | 2500 | 80 | 80 | 60 | 48 | 40 | 34 | 30 | 27 | 23 | 18 | 15 | 14 | 14 | 14 | 14 | 12 | 10 | 9 | 8 | 7 |
| 25 | 1250 | 160 | 160 | 120 | 96 | 80 | 68 | 60 | 54 | 46 | 36 | 30 | 32 | 32 | 32 | 26 | 21 |  |  |  |  |

(Note) Operations may become unstable at low speed and with almost no payload.

## Payload by speed and acceleration (Double slider specification)

The unit for payload is kg. If blank, operation is not possible.

| Orientation |  | Horizontal |  |  |  |  |  |  |  |  |  |  | Vertical |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead | Max. speed ( $\mathrm{mm} / \mathrm{s}$ ) | Acceleration (G) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $(\mathrm{mm})$ |  | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| 50 | 2500 | 70 | 70 | 50 | 38 | 30 | 24 | 20 | 17 | 14 | 8 | 5 | 10 | 10 | 8 | 6 | 4 |  |  |  |  |
| 25 | 1250 | 150 | 150 | 110 | 86 | 70 | 58 | 50 | 44 | 36 | 26 | 20 | 25 | 25 | 22 | 20 | 19 |  |  |  |  |

(Note) Operations may become unstable at low speed and with almost no payload.
Stroke and maximum speed

|  | Stroke | $900 \sim 3000$ <br> (every 50 mm$)$ |
| :---: | :---: | :---: |
| Lead |  | 2500 |
| 50 | 1250 |  |
| 25 |  |  |

(unit: $\mathrm{mm} / \mathrm{s}$ )


## - Dimensions by Stroke

| Stroke | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | 1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | 1850 | 1900 | 1950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 1410 | 1460 | 1510 | 1560 | 1610 | 1660 | 1710 | 1760 | 1810 | 1860 | 1910 | 1960 | 2010 | 2060 | 2110 | 2160 | 2210 | 2260 | 2310 | 2360 | 2410 | 2460 |
| B | 1390 | 1440 | 1490 | 1540 | 1590 | 1640 | 1690 | 1740 | 1790 | 1840 | 1890 | 1940 | 1990 | 2040 | 2090 | 2140 | 2190 | 2240 | 2290 | 2340 | 2390 | 2440 |
| F | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 |
| G | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 10 |
| H | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 24 |
| J | 920 | 970 | 1020 | 1070 | 1120 | 1170 | 1220 | 1270 | 1320 | 1370 | 1420 | 1470 | 1520 | 1570 | 1620 | 1670 | 1720 | 1770 | 1820 | 1870 | 1920 | 1970 |


| Stroke | 2000 | 2050 | 2100 | 2150 | 2200 | 2250 | 2300 | 2350 | 2400 | 2450 | 2500 | 2550 | 2600 | 2650 | 2700 | 2750 | 2800 | 2850 | 2900 | 2950 | 3000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 2510 | 2560 | 2610 | 2660 | 2710 | 2760 | 2810 | 2860 | 2910 | 2960 | 3010 | 3060 | 3110 | 3160 | 3210 | 3260 | 3310 | 3360 | 3410 | 3460 | 3510 |
| B | 2490 | 2540 | 2590 | 2640 | 2690 | 2740 | 2790 | 2840 | 2890 | 2940 | 2990 | 3040 | 3090 | 3140 | 3190 | 3240 | 3290 | 3340 | 3390 | 3440 | 3490 |
| F | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 |
| G | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 13 | 14 | 14 | 14 | 14 | 15 | 15 |
| H | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 32 | 32 | 32 | 32 | 34 | 34 |
| J | 2020 | 2070 | 2120 | 2170 | 2220 | 2270 | 2320 | 2370 | 2420 | 2470 | 2520 | 2570 | 2620 | 2670 | 2720 | 2770 | 2820 | 2870 | 2920 | 2970 | 3020 |

## - Mass by Stroke

| Stroke |  | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | 1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 | 1750 | 1800 | 1850 | 1900 | 1950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mass <br> (kg) | Without brake | 38.4 | 39.5 | 40.5 | 41.6 | 42.7 | 43.7 | 44.8 | 45.8 | 46.9 | 48.0 | 49.0 | 50.1 | 51.2 | 52.2 | 54.2 | 55.3 | 56.4 | 57.4 | 58.5 | 59.6 | 60.6 | 61.7 |
|  | With brake | 38.9 | 40.0 | 41.0 | 42.1 | 43.2 | 44.2 | 45.3 | 46.3 | 47.4 | 48.5 | 49.5 | 50.6 | 51.7 | 52.7 | 54.7 | 55.8 | 56.9 | 57.9 | 59.0 | 60.1 | 61.1 | 62.2 |


|  | Stroke | 2000 | 2050 | 2100 | 2150 | 2200 | 2250 | 2300 | 2350 | 2400 | 2450 | 2500 | 2550 | 2600 | 2650 | 2700 | 2750 | 2800 | 2850 | 2900 | 2950 | 3000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mass <br> (kg) | Without brake | 62.7 | 63.8 | 64.9 | 65.9 | 67.0 | 68.1 | 69.1 | 70.2 | 71.3 | 72.3 | 73.4 | 74.5 | 76.5 | 77.5 | 78.6 | 79.7 | 80.7 | 81.8 | 82.8 | 83.9 | 85.0 |
|  | With brake | 63.2 | 64.3 | 65.4 | 66.4 | 67.5 | 68.6 | 69.6 | 70.7 | 71.8 | 72.8 | 73.9 | 75.0 | 77.0 | 78.0 | 79.1 | 80.2 | 81.2 | 82.3 | 83.3 | 84.4 | 85.5 |

CAD drawings can be downloaded from our website
www.intelligentactuator.com



(dimension Brange
Detail drawing $Q$
Reference surface, $T$-slot details




Detail drawing P
Base oblong hole details Cable exit direction

## - Dimensions by Stroke

| Nominal stroke |  | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | 1400 | 1450 | ( 1500 | (15 |  | 1600 | 1650 | 1700 | 1750 | 1800 | 1850 | 1900 | 1950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effective stroke | Slider actual span minimum | 685 | 735 | 785 | 835 | 885 | 935 | 985 | 1035 | 10851 | 1135 | 1185 | 1235 | 1285 | 1335 |  | 1385 | 1435 | 1485 | 1535 | 1585 | 1635 | 1685 | 1735 |
|  | Slider actual span maximum | 540 | 590 | 640 | 690 | 740 | 790 | 840 | 890 | 940 | 990 | 10401 | 1090 | 1140 | 1190 |  | 1240 | 1290 | 1340 | 1390 | 1440 | 1490 | 1540 | 1590 |
|  | L | 1410 | 1460 | 1510 | 1560 | 1610 | 1660 | 1710 | 1760 | 1810 180 | 1860 | 1910 | 1960 | 2010 | 2060 |  | 2110 | 2160 | 2210 | 2260 | 2310 | 2360 | 2410 | 2460 |
|  | B | 1390 | 1440 | 1490 | 1540 | 1590 | 1640 | 1690 | 1740 | 179018 | 1840 | 1890 | 1940 | 1990 | 2040 |  | 2090 | 2140 | 2190 | 2240 | 2290 | 2340 | 2390 | 2440 |
|  | F | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 |  | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 |
|  | G | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 8 |  | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 10 |
|  | H | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 20 |  | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 24 |
|  | J | 920 | 970 | 1020 | 1070 | 1120 | 1170 | 1220 | 1270 | 13201 | 1370 | 1420 | 1470 | 1520 | 1570 |  | 1620 | 1670 | 1720 | 1770 | 1820 | 1870 | 1920 | 1970 |
| Nominal stroke |  | 2000 | 2050 | 2100 | 2150 | 2200 | 2250 | 2300 | 2350 | - 2400 | (2450 | - 2500 | - 2550 |  | 2600 | 2650 |  | 2700 | 2750 | 2800 | 2850 | 2900 | 2950 | 3000 |
| Effective stroke | Slider actual span minimum | 1785 | 1835 | 1885 | 1935 | 1985 | 2035 | 2085 | 2135 | - 2185 | -2235 | - 2285 | 2335 |  | 2385 | 2435 |  | 2485 | 2535 | 2585 | 2635 | 2685 | 2735 | 2785 |
|  | Slider actual span maximum | 1640 | 1690 | 1740 | 1790 | 1840 | 1890 | 1940 | 1990 | 2040 | - 2090 | - 2140 | - 2190 |  | 2240 | 2290 |  | 2340 | 2390 | 2440 | 2490 | 2540 | 2590 | 2640 |
|  | L | 2510 | 2560 | 2610 | 2660 | 2710 | 2760 | 2810 | 2860 | 2910 | 12960 | 0 3010 | 10 3060 |  | 3110 | 3160 |  | 3210 | 3260 | 3310 | 3360 | 3410 | 3460 | 3510 |
|  | B | 2490 | 2540 | 2590 | 2640 | 2690 | 2740 | 2790 | 2840 | 2890 | - 2940 | 2990 | 3040 |  | 3090 | 3140 |  | 3190 | 3240 | 3290 | 3340 | 3390 | 3440 | 3490 |
|  | F | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 | 195 | 245 | 295 | 145 |  | 195 | 245 |  | 295 | 145 | 195 | 245 | 295 | 145 | 195 |
|  | G | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 13 |  | 13 | 13 |  | 13 | 14 | 14 | 14 | 14 | 15 | 15 |
|  | H | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 28 | 28 | 28 | 28 | 30 |  | 30 | 30 |  | 30 | $\begin{gathered} 32 \\ 2770 \end{gathered}$ | $\begin{gathered} 32 \\ \hline 2820 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 32 \\ \hline 2870 \\ \hline \end{array}$ | $\begin{gathered} 32 \\ \hline 2920 \end{gathered}$ | $34$ | $34$ |
|  | J | 2020 | 2070 | 2120 | 2170 | 2220 | 2270 | 2320 | 2370 | - 2420 | - 2470 | 2520 | 2570 |  | 2620 | 2670 |  | 2720 |  |  |  |  |  | 3020 |

## - Mass by Stroke

| Nominal stroke |  | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | 1400 | - 14 |  | 1500 | - 1550 | - 1600 | 1650 | 1700 | 1750 | 1800 | 1850 | 1900 | 1950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effective stroke | Slider actual span minimum [ 35 mm ] | 685 | 735 | 785 | 835 | 885 | 935 | 985 | 1035 | 1085 | 1135 | 1185 | 512 |  | 1285 | 1335 | 1385 | 1435 | 1485 | 1535 | 1585 | 1635 | 1685 | 1735 |
|  |  | 540 | 590 | 640 | 690 | 740 | 790 | 840 | 890 | 940 | 990 | 1040 | 0 |  | 1140 | - 1190 | 1240 | 1290 | 1340 | 1390 | 1440 | 1490 | 1540 | 1590 |
| Mass (kg) | Without brake | 41.4 | 42.5 | 43.5 | 44.6 | 45.7 | 46.7 | 47.8 | 48.8 | 49.9 | 51.0 | 52.0 |  |  | 54.2 | 55.2 | \| 57.2 | 58.3 | 59.4 | 60.4 | 61.5 | 62.6 | 63.6 | 64.7 |
|  | With brake | 41.9 | 43.0 | 44.0 | 45.1 | 46.2 | 47.2 | 48.3 | 49.3 | 50.4 | 51.5 | 52.5 | 53 |  | 54.7 | 755.7 | 57.7 | 58.8 | 59.9 | 60.9 | 62.0 | 63.1 | 64.1 | 65.2 |
| Nominal stroke |  | 2000 | 2050 | 2100 | 2150 | 2200 | 2250 | 2300 | - 2350 | 2400 | - 2450 |  | 2500 | 255 |  | 2600 | 2650 | 2700 | 2750 | 2800 | 2850 | 2900 | 2950 | 3000 |
| Effective stroke | Slider actual span minimum [ 35 mm ] | 1785 | 1835 | 1885 | 1935 | 1985 | 2035 | 2085 | 2135 | - 2185 | 2235 |  | 2285 | 233 |  | 2385 | 2435 | 2485 | 2535 | 2585 | 2635 | 2685 | 2735 | 2785 |
|  | Slider actual span maximum | 1640 | 1690 | 1740 | 1790 | 1840 | 1890 | 1940 | 1990 | 2040 | 2090 |  | 2140 | 219 |  | 2240 | 2290 | 2340 | 2390 | 2440 | 2490 | 2540 | 2590 | 2640 |
| Mass (kg) | Without brake | 65.7 | 66.8 | 67.9 | 68.9 | 70.0 | 71.1 | 72.1 | 73.2 | 74.3 | 75.3 |  | 76.4 | 77. |  | 79.5 | 80.5 | 81.6 | 82.7 | 83.7 | 84.8 | 85.8 | 86.9 | 88.0 |
|  | With brake | 66.2 | 67.3 | 68.4 | 69.4 | 70.5 | 71.6 | 72.6 | 73.7 | 74.8 | 75.8 |  | 76.9 | 78. |  | 80.0 | 81.0 | 82.1 | 83.2 | 84.2 | 85.3 | 86.3 | 87.4 | 88.5 |
| (Note) The free slider mass of 3 kg is added to the single slider specification. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Applicable controllers

The actuator in this page can be operated by the following controllers. Select the type that suits the application of intended use.

| Name | External appearance | Maximum number of connectable axes. | Power voltage | Control method |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Max. number of positioning points |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Positioner | Pulse train | Program | Network *Select |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | DV | CC | CIE | PR | CN | ML | ML3 | EC | EP | PRT | SSN | ECM |  |
| RCON | 13: | $\begin{gathered} 16 \\ (8 \text { for } \mathrm{ML} 3, \text { SSN and ECM) }) \end{gathered}$ | DC24V <br> Single phase AC200V Three-phase AC200V | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 128 (ML3, SSN and ECM have no positioning data) |
| RSEL | 阯碞 | 8 |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 36000 |
| SCON-CB/CGB | 1 | 1 | Single phase AC200V | - | $\bullet$ | - | - | - | - | - | - | - | - | - | - | - | - | - | 512 (768 for the network specification) |
| SSEL-CS |  | 2 |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 20000 |
| XSEL-P/Q | Tiliail | 6 | Single phase AC200V Three-phase AC200V | - | - | - | - | - | - | - | - | - | - | - | $\bullet$ | - | - | - | 20000 |
| XSEL-RA/SA | vilinail | 8 |  | - | - | - | - | - | - | $\bullet$ | - | - | - | - | - | - | - | - | 55000 (varies depending on the type) |

## Cable exit direction

## Model <br> A1 / A3

Description
Specified when the actuator cable exit direction is changed.


AQ seal

## Model

## AQ (standard equipment)

$A Q$ seal is a lubricant unit that uses a lubricating member made of lubricating oil solidified with resin.
Because it is a porous member that contains a large amount of lubricating oil, the oil seeps out on the surface through capillary action. Lubricating oil is supplied by pressing the $A Q$ seal on the surface of the guide and steel made ball screw, enabling long-term use without maintenance in a synergistic effect by the combined use of the grease.

## Brake

## Model B

Description This is a holding mechanism that prevents the slider from falling and damaging any attached fittings when the power or servo is turned off. This option is needed when the actuator is used vertically.

## Hanging bracket

## Model EB

Description
For mounting the actuator, an eye bolt, mounting fittings, bolts with a hexagonal hole and hexagonal nuts are supplied to lift the actuator. The connecting nut to attach the mounting fittings is attached in the $T$ slot of the main unit side surface for shipment. * Check the operation manual for details.

## Setting of high payload setting

## Model HLA

This option increases payload capacity. In the case of the rated acceleration/deceleration ( 0.2 G ), the maximum payload is 400 kg for horizontal operations and 80 kg for vertical operations. (Note) Setting is available only for ISPB-WXM Lead 10.

## Home limit switch

Model L

Description When performing home-return, the pressing method determines the home position upon pressing against the mechanical end and reversing. This is an option for triggering the reversion using the sensor.
When L option is specified, 3 proximity sensors including HOME (for home detection), +OT (overtravel on opposite motor side) and -OT (overtravel on the motor side) will be installed. (HOME and -OT are integrated twin sensors)
Use it to fine-tune the inverted position or enhance the certitude. (Please note that moving the home sensor excessively may shorten the stroke) *The home limit switches, IS(P)B-WXM / WXMX, are installed inside the main unit.

## Master axis specification/Slave axis specification in synchronous operation

## Model LM(Limit master axis specification) $\mathbf{S}$ (Slave axis specified)

Description
One of the features of the XSEL controller is "synchronous operation."
This feature is used to operate the two axes of actuators at the same time.
With one axis used as the master $(\mathrm{M})$ and the other as the slave ( S , the slave follows the master in ultra-high-speed control in order to operate at the same time.
Two axes of actuators that run synchronously need to have the same specifications (type, lead, motor wattage and stroke).
When performing a synchronous operation, the master axis needs to have the limit switch
 specification. Be sure to specify LM (limit specification master axis) for the option code of master axis and S for the slave axis.

## Non-motor end specification

## Model <br> NM

Description The normal home position is set to the motor side, but this is the option to set the home position on the other side in order to accommodate variations in equipment layout, etc. (Note that changing the home position after shipment may require the product to be sent back to IAl for re-setting.)

## Double slider specification

## Model W

This option is to add a free slider at the opposite side of the motor of the ball screw. Double slider increases allowable moment and overhang length. The driving and free sliders are not connected for shipment. The customer is required to connect them before use.

## Precautions on the double slider specification

(1) Dynamic allowable moment and overhang length vary according to the span between two sliders.

## Dynamic allowable moment direction

The dynamic allowable moment is a value that assumes the standard rated operational life. Beware that the operational life of the guide decreases if it is used exceeding the moment specification value.

## Moment directions



## Double slider specification



## Overhang length

If used in excess of allowable overhang value, vibration may occur. Make sure to use the product within the allowable value.


## Slider mounting drawing (image)

The driving and free sliders are not connected for shipment. The customer is required to connect them before use.
(Note) Make sure to connect the sliders with the span of 35 to 180 mm .

(2) Make sure to specify an effective stroke to order.

## Ex) ISB-WXM-WA-750-50-1050-T2-M-AQ-W (effective stroke 800mm)

(3) When the double slider specification option is selected, the effective stroke (actually operable stroke) is the value obtained by subtracting (A) (Slider length+Slider actual span) from the nominal stroke (stroke used in the model code).

## Nominal stroke $\geqq$ Effective stroke $+(\mathrm{A})$ <br> (stroke used in model) (actually operable stroke)

## Ex) IS(P)B-WXM

Effective stroke: 800 mm (A): 215 mm (when the slider actual span is 35 mm ) $800 \mathrm{~mm}+215 \mathrm{~mm}=1015 \mathrm{~mm} \ldots$ Order the model of 1050 mm .

(4) Make sure to confirm the payload of the double slider specification, referring to the "Payload by Speed and Acceleration (Double slider specification)" on each product specification page.
(5) The maximum speed of the IS(P)B-WXM decreases as its stroke becomes longer due to the ball screw's dangerous number of revolution. Confirm the maximum speed of the desired nominal stroke, referring to the "Stroke and Max. Speed" of the product specification page.

Double slider specifications

| Model | Dynamic allowable moment |  |  |  |  |  | Overhang length | Slider <br> mass (kg) | Slider length (mm) | Selectable effective stroke of the double slider specification (mm) | (A) <br> slider length $+$ slider actual span (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Standard rated operational life (km) | Slider span (mm) |  | Ma direction $(N \cdot m)$ | Mb direction ( $\mathrm{N} \cdot \mathrm{m}$ ) | Mc direction $(N \cdot m)$ | Ma $\mathrm{Mb} \cdot \mathrm{Mc}$ direction |  |  |  |  |
|  |  | Slider actual span | Slider cover span |  |  |  |  |  |  |  |  |
| IS (P) B-WXM | 10000 | Min. 35 | - | 616 | 880 | 739 | 1975 | 3.0 | 180 | 100~1085(Nominal stroke 350~1300) | 215 |
|  |  | Max. 180 | - | 1130 | 1610 | 739 | 2700 |  |  | 140~940(Nominal stroke 500~1300) | 360 |
| IS (P) B-WXMX | 10000 | Min. 35 | - | 616 | 880 | 739 | 1975 | 3.0 | 180 | 540~2785(Nominal stroke 900~3000) | 215 |
|  |  | Max. 180 | - | 1130 | 1610 | 739 | 2700 |  |  | 540~2640(Nominal stroke 900~3000) | 360 |

## Duty ratio

When using IS(P)B-WXMX vertically, operate it at the duty ratio of $50 \%$ or less. In other cases, the guideline of the usable duty ratio varies depending on the operating conditions (such as payload and acceleration/deceleration). Calculate the load factor, LF, and time ratio of acceleration/deceleration tod from the formula below.

## Note:

If an over load error occurs, lower the duty ratio by extending the stop time or slow down acceleration/deceleration.

## Calculation method of the duty ratio



Calculate the load factor and acceleration/deceleration time ratio, and read the duty ratio from the graph. When the load factor is less than 50\%, the duty ratio of $100 \%$ (continuous operation) is possible.

## 1 Load factor LF

Refer to the product specification page for the rated acceleration/deceleration and maximum payload at the rated acceleration/deceleration.

When the acceleration/deceleration is smaller than the rated value during operation

$$
\text { Load factor: LF }=\frac{\mathrm{M} \times \alpha}{M_{r} \times \alpha_{r}}(\%)
$$

Maximum payload at the rated acceleration: $\mathrm{Mr}(\mathrm{kg})$
Rated acceleration/deceleration : $\alpha \mathrm{r}(\mathrm{kg})$
Payload during operation : M (kg)
Acceleration/deceleration during operation : $\alpha$ (G)

## When the acceleration/deceleration is greater than the rated value during operation

Load factor: $L F=\frac{M \times \alpha}{M_{d} \times \alpha}=\frac{M}{M_{d}}$ (\%)
Payload of command acceleration $: \mathrm{M}_{\mathrm{d}}(\mathrm{kg})$
Payload during operation
: M (kg)
Acceleration/deceleration during operation : $\alpha$ 〔G〕

## 2 Acceleration/deceleration time ratio tod

$$
\begin{gathered}
\text { Acceleration/deceleration time ratio tod }=\frac{\begin{array}{c}
\text { Acceleration time } \\
\text { during operation } \\
+ \text { during operation }
\end{array}}{\text { Operation time }}(\%) \\
\text { Acceleration time }=\frac{\text { Operating speed }(\mathrm{mm} / \mathrm{s})}{\text { Operating acceleration }\left(\mathrm{mm} / \mathrm{s}^{2}\right)}(\mathrm{sec} .) \quad \text { Deceleration time }=\frac{\text { Operating speed }(\mathrm{mm} / \mathrm{s})}{\text { Operating deceleration }\left(\mathrm{mm} / \mathrm{s}^{2}\right)}(\mathrm{sec} .) \\
\text { Acceleration }\left(\mathrm{mm} / \mathrm{s}^{2}\right)=\text { Acceleration }(\mathrm{G}) \times 9800 \mathrm{~mm} / \mathrm{s}^{2} \quad \text { Deceleration }\left(\mathrm{mm} / \mathrm{s}^{2}\right)=\operatorname{Deceleration~}(\mathrm{G}) \times 9800 \mathrm{~mm} / \mathrm{s}^{2}
\end{gathered}
$$

## 3 Reading the duty ratio from the calculated load factor LF and Acceleration/deceleration time ratio tod

Ex) When the load factor LF is $80 \%$ and Acceleration/deceleration time ratio tod is $80 \%$, the guideline of the duty ratio is approx. 75\%.


## Maintenance parts (actuator)

IS(P)B-WXM / WXMX Maintenance parts schematic drawing


List of maintenance parts model codes
The numbers in the list correspond to those in the schematic drawing.

| Main unit model | (1) Motor unit |  |
| :---: | :---: | :---: |
|  | Without brake | With brake |
| WXM / WXMX | M-ISB-TMA750-WA-CO | M-ISB-TMA750-WA-BT-CO |


| Main unit model | (2) Intermediary support Assy | Required quantity |  |
| :---: | :---: | :---: | :---: |
|  |  | Stroke (mm) | Quantity (pieces) |
| WXMX | IMS-ISB-WXM | $900 \sim 1550$ | 1 |
|  |  | $1600 \sim 2550$ | 2 |
|  |  | $2600 \sim 3000$ | 3 |

## Controller/Options

4
Refer to the IAI General Catalog 2021, Volume 8 for the details of the controllers and options. If you are considering RCON/RSEL, the "R-unit Controller Model Selection System" is recommendable.

## Single axis controller

In case of a single axis control using one controller


SCON supports pulse output. Easy links with related control devices is possible.
(When a field network control with pulse output is necessary, contact IAI representatives)

- Low price
-The same control mode as a solenoid valve is possible - Controller dedicated programs are not necessary


## 2002



## Multi-axis controllers

Control of multiple axes by a single controller


Use these controllers when interpolation motions are required.

## PC-compatible teaching software

There are two kinds of software to set up positions and parameters. Please purchase through your distributor and a download link will be sent to your valid email address.


Supports controllers whose model code has " $\square$ CON"


IA-101-

[^1]Teaching pendant


[^2]
## Maintenance parts (cable)

When ordering maintenance parts such as a cable after your purchase of an actuator, refer to the following model codes.

| - Table of compatible cables |  |  |  | * Specify cable length (L) in $\underset{\text { Ex) }}{\text { in }} \square \square \square \square \square$, |
| :---: | :---: | :---: | :---: | :---: |
|  | Cable length (m) | Motor robot cable |  | Encoder robot cable |
|  |  | SCON / SSEL / XSEL | RCON / RSEL | Common to all controllers |
| IS(P)B Standard | $1 \sim 20$ | CB-X-MA $\square \square \square$ | CB-X2-MA $\square \square \square$ | CB-X1-PA $\square \square \square$ |
|  | $21 \sim 30$ |  |  | CB-X1-PA $\square \square \square$-AWG24 |
| IS(P)B with LS | $1 \sim 20$ |  |  | CB-X1-PLA $\square \square \square$ |
|  | $21 \sim 30$ |  |  | CB-X1-PLA $\square \square \square$-AWG24 |

## Model CB-X-MA $\square \square \square$



Minimum bending $\mathrm{Rr} \mathrm{r}=51 \mathrm{~mm}$ or more (dynamic bending condition)

## Model CB-X2-MA



Model CB-X1-PA $\square$ / CB-X1-PA $\square$ -AWG24


Minimum bending $\mathrm{R}=44 \mathrm{~mm}$ or more (dynamic bending condition)


Model CB-X1-PLA $\square \square \square /$ CB-X1-PLA $\square \square \square$-AWG24


## IAI America, Inc. <br> USA Headquarter \& Western Region (Los Angeles): 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712 Midwest Branch Office (Chicago) : 110 E. State Pkwy, Schaumburg, IL 60173 (800) 944-0333 <br> Southeast Branch Office (Atlanta): 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (678) 354-9470 <br> www.intelligentactuator.com

JAPAN Headquarters: 577-1 Obane, Shimizu-ku, Shizuoka-shi, Shizuoka, 424-0103, JAPAN
The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH
Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany IAI (Shanghai) Co., Ltd.
Shanghai Jiahua Business Center A8-303, 808,
Hongqiao Rd., Shanghai 200030, China
IAI Robot (Thailand) Co., Ltd.
825 Phairojkijja Tower 7th Floor, Debaratana Rd.,
Bangna Nuea, Bangna, Bangkok 10260, Thailand


[^0]:    (Note) Robot cables are standard for this item.

[^1]:    Supports controllers whose model code has " $\square$ SEL"

[^2]:    - Equipped with a full-color touch panel - Position data registration, trial run, troubleshooting for errors and display of the maintenance list are possible.

